Growth in poultry farming has been relentless. Chicken meat consumption is expected to exceed that of pork by 2022, making it the number one meat globally.
Egg consumption continues to grow as well because eggs are inexpensive, easy to process and can be included in other foods. Universal acceptance by nearly all cultures and religions ensures that poultry will continue to prosper.
In the next 30 years, we will see another 3 billion people inhabit the Earth, and the middle class of urban dwellers will continue to rise. Poultry farming must respond. Farmers must farm data, not just chickens, and in doing so, harness new digital technologies and information to improve efficiencies and respond to the growing requirements of proactively engaged consumers.
Here are four digital technologies that will define the future of poultry farming.
Robots doing the dirty work
One of the most practical applications of digital technology in the poultry industry is that of robots.
There are a multitudinous number of repetitive tasks that robots could assist with. Poultry houses require nearly constant attention — cleaning and sanitising, collecting eggs and checking birds. This is time-consuming, monotonous work, but it would not bother a robot. Additionally, robots are more precise, thorough and honest about the work they do compared to their human counterparts.
France-based Octopus Robots designs entirely autonomous robots to prevent and control disease and infection in poultry houses. The bots also evaluate environmental factors such as temperature, humidity, carbon dioxide, ammonia, sound and brightness.
Another French robotic company, Tibot, explains that robots can discourage chickens from laying eggs on the floor and also keep the birds moving for an added health benefit. These attributes can result in cost-savings for producers in product and labor while appealing to welfare advocates.
Drones protecting the flock?
The opportunity for drones in chicken houses may seem a little farfetched. There is concern that the drone could make the flock nervous and cause undue stress. To this point, an experiment by Georgia Tech in 2015 showed the birds were not yet ready for this technology, compared to robots, which are probably better suited for indoor tasks anyway.
Free-range or yard-kept chickens and turkeys that roam fields freely would be a better application for drone technology, which could herd, protect and monitor them. Adaptation of avian species to drones would probably require training but will most likely succeed outdoors.
Artificial intelligence in processing
AI technologies have become the backbone of many other technologies. Robots, for example, use AI in the processing plant to improve efficiencies. Through a collaboration of efforts, iPoultry is a high-tech automated processing system first demonstrated at VIV Europe.
Automating a procedure such as chicken deboning requires recognition of the shape and size of each chicken and individual adaptation. Artificial intelligence is the perfect technology for this application. Consider that a computer can analyze the difference in density and structure of meat versus bone, thereby making the most precise cut possible.
The Big Data Advantage
As we can collect more information on animals including the bacteria in their digestive tract and how they respond to nutrition at the gene level, it becomes clear that farmers are learning how to manage vast amounts of data as much as they previously understood how to manage their animals.
‘Farming the data’ to predict an individual animal’s growth requires the ability to interpret ‘Big data’. Alltech has been creating complex algorithms to interpret information they are collecting of the microbiome, nutrigenomics and track pathogens, such as campylobacter or antibiotic resistant bacteria. While nutrigenomics allows us to generate information to feed the animal precisely, and DNA profiling to know exactly what specific bacteria are present. Without powerful data analysis, there is no way to take advantage of this.